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ABSTRACT

A combination of Spectral Methods and Finite Differences will be used to solve the

Navier-Stokes equations for a viscous flow past a circular cylinder and past sym-

metric Joukowski airfoils. Different discretizations of the physical problem will be

explored, and the solution of the equations will be analyzed for different geometries

and boundary conditions.

This project is the continuation of our research started as a Master Thesis at

Wichita State University under the advising of Professor Alan Elcrat; the project is

a deep exploration of the solution of Navier-Stokes equations by implementing new

methods of discretization including spectral differentiation. We will compare results

previously obtained by Gauss-Seidel/Successive Over-Relaxation Methods (SOR) to-

gether with Finite Differences, with results using Newton’s Method, based on work

by Bengt Fornberg, but implementing spectral differentiation. As we will see, due

to the nature of the physical domain and the conformal map involved to transform

it to a more tractable domain, the use of spectral methods in both directions of our

two dimensional problem proved to be inefficient due to unnecessary concentration of

points in areas of the domain of low gradients. However, to take advantage of spec-

tral methods, we combined spectral methods in one direction with high order finite

vii



differences on the other direction, where different mesh densities were designed to

have higher concentration of points where required. With this discretizations, spec-

tral methods were approached as the limiting order of finite differences as presented

in A Practical Guide to Pseudospectral Methods [14].

We will explore the solution for flows past more general geometries, symmetric

Joukowski airfoils. Then we will study the implementation and effect of suction

boundary conditions on the obstacle.

In this text I have decided to include part of the introduction and theoretical

background shown in my Master thesis to allow new readers to get familiarized with

the subject, but the solution scheme, the different discretizations and results are all

new explorations that we are proud to present.
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Chapter 1

INTRODUCTION

The equations that govern a fluid are very rich from several points of view. The non-

linearity of the equations and the instability of the solutions give the problem great

mathematical interest. The intrinsic difficulties to find the solution bring our skills

and computational power to the edge. Physically, the complexity of the phenom-

ena described, makes Computational Fluid Dynamics a complete interdisciplinary

challenge.

Traditionally the understanding of the fluids was based on experimental and theo-

retical methods. The arrival of the digital computer and the development of the high

speed personal computers have included a third method to attack fluid problems, the

computational method.
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The theoretical or analytical approach, and its exact solutions, is restricted to

simple problems, with simple geometries, and is usually restricted to linear problems.

The experimental approach is widely used for design of all types of machinery that

involve fluids, but the tests are very expensive and are also physically limited to

extreme conditions such as atmospheric reentry or any other high temperature or

high velocity tests. On the other hand, the computational or numerical method, is

sometimes able to overcome these restrictions, and the cost is very reduced compared

to the experimental tests. However, the computational methods have their limitations

like storage, speed, and sometimes an improper theoretical background to support the

calculations.

1.1 Historic Perspective

One of the first important developments in CFD was the work by Richardson in

1910, introducing iterative schemes to solve Laplace’s equation. Later, in 1918 an

improved method was developed by Liebmann, in which differing from Richardson’s

values from both new and old iteration steps are used in each step, improving the

convergence in the relaxation scheme. In 1928 the work of Courant, Friedrichs and

Lewy, gave bases for advances in the study of uniqueness, existence and stability of
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the solution of partial differential equations[2]. In 1933 A. Thom studied the flow past

circular cylinders at low speed, from the numerical and experimental point of view.

In his experimental observations, oscillations in the wake behind the cylinder gave

rise to what is called the Karman Vortex Street even for low velocities of the fluid.[7]

By 1955 Allen and Southwell attacked the problem of viscous flow past a cylinder,

applying (by hand) Southwell’s relaxation scheme. A year later G. K. Batchelor

gave “A proposal concerning laminar wakes behind bluff bodies at large Reynolds

numbers” in which from theoretical statements, he explores the possibility of closed

wakes for high Reynolds numbers, and its implications.[6] A great development in this

area was led by Bengt Fornberg who started to carry out computations in this area

around 1980. By 1985 his research on steady viscous flow past a circular cylinder, was

remarkably rich, solving the Navier-Stokes equations using Newton’s Method to get a

faster convergence and prevent time instabilities coming from the iteration process[8].

Our work in this project is based on his work, also using key concepts from his 1991

paper for a row of circular cylinders[10].
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1.2 Partial Differential Equations

The majority of physical phenomena where the quantities involved change in space

and time are governed by Partial Differential Equations, such as diffusion, electromag-

netic wave propagation, determination of the spectrum in quantum mechanics and

fluid mechanics, among others. To fully understand the physical behavior of the

models represented by these equations we need to have a clear mathematical under-

standing of the character and properties of the solutions of the governing equations.

As we discussed, these equations can be solved analytically only for the simplest cases;

to obtain quantitative results we need to make use of numerical methods.

1.2.1 Equilibrium Problems

Equilibrium or Boundary Value Problems are problems for which we need to find a

solution of a partial differential equation on a closed domain restricted by a set of

boundary conditions; sometimes they are also called “jury” problems, given that the

boundary conditions are the jury of the solution of the PDE in the interior of the

domain. These types of problems are governed by Elliptic partial differential equa-

tions, such as Laplace’s Equation, Poisson’s equation for the electrostatic potential,

the time independent Schrödinger’s equation, and of course, the steady Navier-Stokes
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Equations.

The boundary conditions can be classified in three types: Dirichlet conditions

where a fixed values is imposed for the solution in the boundary; Neumann condi-

tions where the normal derivative of the solution is imposed in the boundary; and

Robin conditions where we use a combination of Dirichlet and Neumann boundary

conditions.[1],[2]
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Chapter 2

THEORETICAL BACKGROUND

The phenomena treated in fluid mechanics is macroscopic, considering the fluid as a

continuous medium. That is, no matter how small is the fluid element, it is always

big enough to contain a large number of molecules. In this way, if we talk about

infinitely small volume elements, we mean small elements compared with the volume

of the body in consideration, but big compared with the distance between molecules.[4]

The involved quantities, as velocity, pressure, stream and vorticity will be ex-

pressed as functions of the coordinates, i.e. they make reference to the value of these

quantities in a fixed point in the space.

The following is the derivation of the fundamental equations governing a fluid,

starting with the equation expressing the conservation of matter.
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2.1 Equation of Continuity

Let us consider a volume V0 in space. The fluid mass contained in this volume is

equal to

∫

ρ dV , (2.1)

where ρ is the mass density of the fluid, and the integration is done over the volume

V0. The mass flowing per unit of time through the element of surface ~df is

ρ~v · ~df . (2.2)

The vector ~df has magnitude equal to the area of the element of surface, and its

direction is normal to the element, taken outward by convention. Then, when ρ~v · ~df

is positive, the mass is flowing out from the volume, and is negative when the mass

flows in the volume. The total mass flowing out the volume V0 per unit of time is

then:

∮

ρ~v · ~df , (2.3)

integrating over the complete surface enclosing the volume studied.

Now, the decrease of mass in the volume V0 per unit of time is
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− ∂

∂t

∫

ρ dV . (2.4)

Equating these two expressions:

∂

∂t

∫

ρ dV = −
∮

ρ~v · ~df . (2.5)

Transforming the surface integral into a volume integral via Stokes’ Theorem:

∮

ρ~v · ~df =
∫

∇ · ρ~v dV . (2.6)

Then

∂

∂t

∫

ρ dV = −
∫

∇ · ρ~v dV , (2.7)

∫
[

∂ρ

∂t
+ ∇ · ρ~v

]

dV = 0 , (2.8)

for any arbitrary volume, then, the integrand should be equal to zero:

∂ρ

∂t
+ ∇ · ρ~v = 0 . (2.9)

This is the Equation of Continuity, expressing that the density in a point in

the space can change only due to a net flow of matter inward or outward.[4],[11]
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2.2 Navier-Stokes Equation

Subsequently we will deduce the second fundamental equation of movement of a fluid:

Let us consider a volume in the fluid. The total force acting in this volume is

equal to the integral of the pressure over the surface enclosing the volume,

−
∮

P ~df , (2.10)

that can be transformed into a volume integral as,

−
∮

P ~df = −
∫

∇P dV . (2.11)

That is, −∇P is the force per unit of volume acting on the fluid.

We can now write the equation of movement of an element of volume in the fluid

setting the force −∇P equal to the product of the mass per unit of volume (ρ) times

the acceleration:

ρ
d~v

dt
= −∇P . (2.12)

The derivative d~v
dt

in the previous equation, does not denote the change in the

velocity of the fluid in a fixed point in space, but the change of the velocity of a given

particle of the flow as it is moving in space. We need to express this derivative in

terms of quantities referring to fixed points in space.
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To achieve this, the change d~v in the velocity of a given particle of the fluid over

the time dt can be decomposed in two parts: the change over dt in the velocity of in

a fixed point in space, and the difference between the velocities (in the same instant)

of two points separated d~r, where d~r is the distance traveled by the particle of the

fluid during the time dt. The first part is

(

∂~v

∂t

)

dt , (2.13)

where the derivative ∂~v
∂t

is taken for a constant x, y, z value, that is, in a fixed point

in the space.

The second part is

dx
∂~v

∂x
+ dy

∂~v

∂y
+ dz

∂~v

∂z
= (d~r · ∇)~v . (2.14)

Then,

d~v =

(

∂~v

∂t

)

dt+ (d~r · ∇)~v . (2.15)

Dividing both sides by dt, we obtain

d~v

dt
=
∂~v

∂t
+ (~v · ∇)~v . (2.16)
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Replacing d~v
dt

in (2.12), we have

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇P . (2.17)

Including not only external stresses like the pressure applied on the on volume el-

ement, but the shearing stresses, boundary layer theory [5] shows that the forces

included in the shearing part of the stress tensor are related to the changes in veloc-

ity of the fluid by[2],[16]

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇P +

µ

ρ
∇2~v . (2.18)

where µ is the coefficient of dynamic viscosity. Finally let ν = µ
ρ

be the kinematic

viscosity, then we obtain

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇P + ν∇2~v . (2.19)

This is the Navier-Stokes Equation for incompressible flow expressing the con-

servation of momentum, and shows that the velocity changes in response to convection

(~v · ∇)~v, spatial variations in the pressure ∇P , and viscous forces ν∇2~v, where ν is

the kinematic viscosity, considered constant in this project. We are neglecting terms

depending on the gravity (or other external forces) given that these are important

just in large scale systems where the pressure changes as we increase the altitude.[4],[11]
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Chapter 3

MATHEMATICAL

FORMULATION

Our interest in this project is to study flows which do not depend on time. In this way,

all the derivatives with respect to the time will be zero. Moreover we are assuming

that the fluid is incompressible, having constant density over the fluid (this is a good

approximation under the condition of subsonic flow).[4]

In general, the pressure is given in terms of the density and the temperature

through the state equation. When the temperature changes, an additional equation

for the conservation of the energy is required. For this project we will assume that

the temperature is constant in the fluid.
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Under these conditions, the equations (2.9) and (2.19) are transformed to

∇ · ~v = 0 , (3.1)

(~v · ∇)~v = −1

ρ
∇P + ν∇2~v . (3.2)

For a two dimensional flow, these equations can be written explicitly in terms of the

x and y components of the velocity, denoted by u and v respectively, as:

∂u

∂x
+
∂v

∂y
= 0 , (3.3)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν∇2u , (3.4)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν∇2v . (3.5)

3.1 Stream Function and Vorticity

This system of three coupled non-linear equations can be solved directly, but for a

problem in two dimensions it is more convenient to replace the velocity field by two

13



equivalent scalar fields[3],[18],[20]: the stream function ψ (x, y), and the vorticity ζ (x, y).

We define the stream function ψ as:

u =
∂ψ

∂y
; v = −∂ψ

∂x
. (3.6)

Where we introduce the concept of (streamline) as a curve whose tangent at any

point is the velocity at that point.

For steady flow, the streamlines are time invariant and coincide with the path of

the particles; we can say also that the mass flow perpendicular to this line is zero.

This definition for the stream function is a convenient way to satisfy the equation

of continuity (3.3)

∂u

∂x
+
∂v

∂y
=

∂2ψ

∂x∂y
− ∂2ψ

∂x∂y
= 0 . (3.7)

From

(~v · ∇)ψ = 0 , (3.8)

is shown that ~v is tangent to the lines of ψ constant, that is, tangent to the streamlines,

which can be verified easily as follows:
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(~v · ∇)ψ =

(

u
∂

∂x
+ v

∂

∂y

)

ψ = u
∂ψ

∂x
+ v

∂ψ

∂y
= u (−v) + v (u) = 0 . (3.9)

The vorticity is defined by

ζ =
∂u

∂y
− ∂v

∂x
, (3.10)

which is equivalent to

ζ = −curl(~v) = − (∇× ~v) =
∂u

∂y
− ∂v

∂x
. (3.11)

From (3.6), we can see that the vorticity ζ is related to the stream function ψ by the

expression:

ζ =
∂u

∂y
− ∂v

∂x
=
∂2ψ

∂y2 +
∂2ψ

∂x2 . (3.12)

Then:

∇2ψ = ζ . (3.13)

We can obtain an equation for ζ from the derivative of (3.4) with respect to y

∂u

∂y

∂u

∂x
+ u

∂2u

∂x∂y
+
∂v

∂y

∂u

∂y
+ v

∂2u

∂y2 = −1

ρ

∂2P

∂x∂y
+ ν

∂ (∇2u)

∂y
. (3.14)
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Analogously, differentiating (3.5) with respect to x,

∂u

∂x

∂v

∂x
+ u

∂2v

∂x2 +
∂v

∂x

∂v

∂y
+ v

∂2v

∂x∂y
= −1

ρ

∂2P

∂x∂y
+ ν

∂ (∇2v)

∂x
. (3.15)

Now, subtracting the two previous equations we obtain

∂u

∂x

(

∂u

∂y
− ∂v

∂x

)

︸ ︷︷ ︸

ζ

+u

(

∂2u

∂x∂y
− ∂2v

∂x2

)

+
∂v

∂y

(

∂u

∂y
− ∂v

∂x

)

︸ ︷︷ ︸

ζ

+

v

(

∂2u

∂y2 − ∂2v

∂x∂y

)

= ν

[

∂ (∇2u)

∂y
− ∂ (∇2v)

∂x

]

, (3.16)

∂u

∂x
ζ+u

(

∂2u

∂x∂y
− ∂2v

∂x2

)

+
∂v

∂y
ζ+v

(

∂2u

∂y2 − ∂2v

∂x∂y

)

= ν

[

∂ (∇2u)

∂y
− ∂ (∇2v)

∂x

]

(3.17)

Replacing u and v from the definition of Stream Function and using the equation of

continuity

ζ
∂u

∂x
+
∂v

∂y
︸ ︷︷ ︸

∂2ψ
∂x∂y

−
∂2ψ
∂x∂y

=0

+
∂ψ

∂y

(

∂2u

∂x∂y
− ∂2v

∂x2

)

︸ ︷︷ ︸

∂ζ

∂x

−∂ψ
∂x

(

∂2u

∂y2 − ∂2v

∂x∂y

)

︸ ︷︷ ︸

∂ζ

∂y

= ν

[

∂ (∇2u)

∂y
− ∂ (∇2v)

∂x

]

, (3.18)

∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y
= ν

[

∂ (∇2u)

∂y
− ∂ (∇2v)

∂x

]

, (3.19)
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and

ν

[

∂ (∇2u)

∂y
− ∂ (∇2v)

∂x

]

= ν

[

∂

∂y

(

∂2u

∂x2 +
∂2u

∂y2

)

− ∂

∂x

(

∂2v

∂x2 +
∂2v

∂y2

)]

. (3.20)

Then

∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y
= ν∇2

(

∂u

∂y
− ∂v

∂x

)

︸ ︷︷ ︸

ζ

. (3.21)

Finally we obtain

ν∇2ζ =
∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y
. (3.22)

In this treatment we are considering all the quantities to be nondimensional variables;

where the velocities are measured in terms of the velocity of the fluid at infinity U∞,

the distances are measured in terms of the size of the obstacle (half of the diameter L

of the circle in our case) L/2. We can relate each of the variables to its corresponding

physical quantities (not normalized versions with subscript p) by:

u =
up
U∞

, v =
vp
U∞

, x =
xp
L/2

, y =
yp
L/2

, P =
Pp
ρU∞

If we want to relate the results with physical fluids it is enough to multiply the

distances by the speed of the flow at infinity U∞ and the distances by L/2. In our
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previous equation the units for the vorticity will cancel form both sides of the equation

but the laplacian will have units of length squared in the denominator, therefore we

need to divide by (L/2)2. The right hand side must be multiplied by U∞ due to ∂ψ

∂y

and ∂ψ
∂x

which correspond to velocities and also divide by L/2 due to the denominator

of ∂ζ

∂x
and ∂ζ

∂y
. Leading to the following equation in physical coordinates (ignoring the

subscript p):

4ν

L2
∇2ζ =

2U∞

L

[

∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y

]

. (3.23)

Rearranging

∇2ζ =
U∞L

2ν

[

∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y

]

, (3.24)

And recall from chapter 2 that the relation between kinematic viscosity ν and dynamic

viscosity µ is given by ν = µ

ρ
, then our previous equation can be written as

∇2ζ =
Re

2

[

∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y

]

. (3.25)

Where Re = U∞ρL/µ is the Reynolds number, a non-dimensional quantity, named

in honor to the British physicist Osborne Reynolds. This number represents the

relation between the inertial and viscous forces. If the number is close to zero, the
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inertial forces can be neglected compared to the viscous forces. If the number is large

(1010), the viscous forces can be neglected.[3],[21]

Now, we can find an equation relating the pressure; differentiating (3.4) with

respect to x

(

∂u

∂x

)2

+ u
∂2u

∂x2 +
∂v

∂x

∂u

∂y
+ v

∂2u

∂x∂y
= −1

ρ

∂2P

∂x2 + ν
∂ (∇2u)

∂x
, (3.26)

and differentiating (3.5) with respect to y

∂u

∂y

∂v

∂x
+ u

∂2v

∂x∂y
+

(

∂v

∂y

)2

+ v
∂2v

∂y2 = −1

ρ

∂2P

∂y2 + ν
∂ (∇2v)

∂y
, (3.27)

Adding the two previous expressions, we obtain

(

∂u

∂x

)2

+

(

∂v

∂y

)2

+ u

(

∂2u

∂x2 +
∂2v

∂x∂y

)

+ 2
∂u

∂y

∂v

∂x
+ v

(

∂2v

∂y2 +
∂2u

∂x∂y

)

= −1

ρ

∂2P

∂x2 − 1

ρ

∂2P

∂y2 + ν
∂ (∇2u)

∂x
+ ν

∂ (∇2v)

∂y
, (3.28)

(

∂u

∂x

)2

+

(

∂v

∂y

)2

+ u

(

∂2u

∂x2 +
∂2v

∂x∂y

)

+ 2
∂u

∂y

∂v

∂x
+ v

(

∂2v

∂y2 +
∂2u

∂x∂y

)

= −1

ρ
∇2P + ν∇2

(

∂u

∂x
+
∂v

∂y

)

. (3.29)

Replacing u and v from the stream function definition
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(

∂2ψ

∂x∂y

)2

+

(

− ∂2ψ

∂x∂y

)2

+
∂ψ

∂y

(

∂2u

∂x2 +
∂2v

∂x∂y

)

− 2
∂2ψ

∂y2

∂2ψ

∂x2 − ∂ψ

∂x

(

∂2v

∂y2 +
∂2u

∂x∂y

)

= −1

ρ
∇2P + ν∇2

(

∂u

∂x
+
∂v

∂y

)

, (3.30)

2

(

∂2ψ

∂x∂y

)2

+
∂ψ

∂y

(

∂3ψ

∂x2∂y
− ∂3ψ

∂x2∂y

)

︸ ︷︷ ︸

0

−2
∂2ψ

∂y2

∂2ψ

∂x2 − ∂ψ

∂x

(

− ∂3ψ

∂x∂y2 +
∂3ψ

∂x∂y2

)

︸ ︷︷ ︸

0

= −1

ρ
∇2P + ν∇2

(

∂2ψ

∂x∂y
− ∂2ψ

∂x∂y

)

︸ ︷︷ ︸

0

, (3.31)

2

(

∂2ψ

∂x∂y

)2

− 2
∂2ψ

∂y2

∂2ψ

∂x2 = −1

ρ
∇2P . (3.32)

Leading finally to:

∇2P = 2ρ





(

∂2ψ

∂x2

∂2ψ

∂y2

)

−
(

∂2ψ

∂x∂y

)2


 . (3.33)

The equations (3.13,3.25,3.33) form a system of non-linear elliptic equations equiv-

alent to the original equations (3.3 - 3.5). This system of equations is convenient, since

if we are finding just the velocities, we just need to solve the equations 3.13 and 3.25
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simultaneously, without taking into account the pressure. We need to remark that

the original equations (3.3 - 3.5) are coupled and to obtain the velocity we need to

solve the system of three equations simultaneously, but with the change of variable,

the stream function and vorticity are uncoupled from the pressure and we just need

to solve two equations. If we want to calculate the pressure, this can be obtained by

solving 3.33 after finding the values for ψ and ζ.
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Chapter 4

INTRODUCTION TO

SPECTRAL METHODS

The idea of this project is to implement an emerging technology to solve partial

differential equations, which in some cases is a better alternative to the well known

Finite Difference and Finite Element approach. The appeal of this new approach,

called Spectral Methods, relies on the much better rate of convergence compared to

that of finite differences without the use of fine grids for the discretization; while

fourth order finite difference would require in many cases thousands of points to

achieve certain accuracy (fourth order convergence), spectral methods could reach

machine precision with grids as small as 40 points, behavior called spectral accuracy.
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The idea behind this great improvement in the convergence rate is based on poly-

nomial interpolation not over equispaced grid points (which would lead to Runge

phenomenon) but over grids with a higher concentration of points near the bound-

aries [13]. One particular set of points where the interpolation by polynomials becomes

very small is the Chebyshev collocation [14]:

xj = cos(jπ/N) (4.1)

This concentration can be easily visualized as the projections of the equispaced

points over the unit circle on the interval [−1, 1] [13] as show in the following figure:

Figure 4.1: Chebyshev collocation on the interval [−1, 1] (see [13])

With this approach, the resulting differentiation matrices differ with those result-

ing from the equispaced finite difference approach in the following way: In the case of
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Finite difference, as that of the one used for our first project, the finite difference rep-

resentation of the derivatives is very intuitive and approachable (hence its appeal),

where the centered first derivative of second order of accuracy can be represented

as ∂ψ
∂x

∣
∣
∣
i,j

=
ψi+1,j−ψi−1,j

2∆x
− O

[

(∆x)2
]

[12], and to achieve higher orders of accuracy

would just require larger stencils where the derivative can be approximated by an

algebraic relation of the value of the function at more points. On the other hand,

in spectral differentiation, the derivative of the function is approximated by taking

into account each and every point where the function is known. In this sense spec-

tral differentiation can be seen as a finite difference approximation of limiting order,

where the stencil used is the whole grid. But there is a catch; if we just increase the

stencil size to obtain a higher accuracy over an equispaced grid, the weights needed

in the approximation of the derivatives close to the boundaries (which will not be

centered approximations any more) will be very large and will generate large errors.

This growth on the weights on the differentiation matrix can be avoided if we use

a grid with clustered points near the boundaries, in particular, if we use Chebyshev

collocation [For98]. This approach of limiting order of accuracy will generate dense

differentiation matrices compared with the sparse versions of finite difference, but will

allow us to reach higher accuracy with much smaller grids.
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Chapter 5

DISCRETIZATION OF THE

SYSTEM

The system that we are interested in, is the flow past a circular cylinder. We want

to simulate how the streamlines of free flow are perturbed after placing the obstacle.

We will use the symmetry of the system so that we just need to solve the equations

for the upper half plane:

Figure 5.1: Circular Cylinder in plane flow
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For this system a rectangular discretization is not the best approach. To obtain a

grid that fits better the physical system, we will use the conformal mapping suggested

by Fornberg[8], that maps

Figure 5.2: Physical Domain (X Plane)

To

Figure 5.3: Mapped Domain (Z Plane)
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via the conformal mapping

Z =
√
X − 1√

X
(5.1)

In this new domain the equations (3.13,3.25) are transformed into

J∇2ψ = ζ . (5.2)

∇2ζ =
Re

2

[

∂ψ

∂ξ

∂ζ

∂η
− ∂ψ

∂ξ

∂ζ

∂η

]

. (5.3)

where J is the Jacobian of the transformation:

J =

∣
∣
∣
∣
∣

dZ

dX

∣
∣
∣
∣
∣

(5.4)

Then our plan is to solve the system of equations for a rectangular domain (the Z

Plane):

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

ξ

η

Figure 5.4: Rectangular Grid in the Z Plane
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and then return the solution to the physical domain by inverting the map, that is

X =
Z2 − 2 ± Z

√
Z2 − 4

2
(5.5)

Mapping the rectangular grid to

−20 0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

x

y

Figure 5.5: Rectangular Grid mapped back to the X Plane

In our first attempt to implement spectral methods, we used Chebyshev colloca-

tion in both directions of our domain, resulting grids as the following figure:
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Figure 5.6: Chebyshev collocation in both ξ and η directions

This collocation proved to be inefficient due to unnecessary concentration of points

in regions of the physical domain where not much is happening (low gradients) as the

region of the left before interacting with the circular cylinder and the region of far

flow in the far right; and was not resolved enough in regions of interest where the

gradients are higher, as the obstacle and the part immediately behind the obstacle.

We decided then to use a combination of spectral and finite difference methods, with

Chebyshev collocation in the η direction and equispaced grid in the ξ direction as

illustrated in the following figure:
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Figure 5.7: Chebyshev collocation in the η direction and equispaced collocation in

the ξ direction

We still wanted to get a better resolution close to the obstacle, moving the down-

stream boundary farther and without wasting computer time calculating fine grids in

that region. We decided to use an exponential stretching in the ξ direction that allow

us to move that boundary farther away without sacrificing any resolution close to the

obstacle. In this case we implemented a subroutine developed by Bengt Fornberg,

in a way that we were able to do arbitrary stretchings with ease to fit the needs of

resolution in the required areas. The resulting grid was the following:
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Figure 5.8: Chebyshev collocation in the η direction and exponential collocation in

the ξ direction
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Chapter 6

SOLUTION SCHEME

The non-linear nature of the Navier-Stokes equations makes the solution process very

challenging. In our previous work we used an iterative scheme based on Gauss-

Seidel/Successive Over-Relaxation Methods (SOR). Now we will use Newton’s as in

[9] but implementing spectral differentiation.

Newton’s method (or Newton Raphson method) is a well known method for finding

successive approximations to zeros of a function, which is very powerful given that it

converges in a few iterations (quadratic convergence) provided that we have a good

initial guess. Given a function f(x) and its derivative f ′(x), starting with a guess xold

we can obtain a better approximation to the zero of the function simply by computing

xnew = xold − f(xold)
f ′(xold)

. In the case of solving a nonlinear system of partial differential
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equations like the problem at hand, we replace the division by f ′(x) and instead we

multiply on the left by the inverse of the Jacobian H−1 of the operator representing

the system; each iteration then becomes

Xnew = Xold −H−1F (Xold), (6.1)

where the inverse is not actually calculated but instead the process is replaced by

solving the system of linear equations

H(Xold)(Xnew −Xold) = −F (Xold). (6.2)

The matrix representation of theses operators can be studied as follows: recall the

system of equations under study 3.13 and 3.25 and let us represent the partial deriva-

tives by subindices, the laplacian operator ∇2 by ∆ and the negative of the vorticity

ζ by w. Simplifying our notation we then write the set of equations as:

∆ψ + w = 0 , (6.3)

∆w +
Re

2

[

ψywx − ψxwy

]

= 0 . (6.4)

We let X be the 2MN×1 matrix containing both the values of stream and vorticity

as follows
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X =




























ψ

ω




























, (6.5)

then the system can be written as F (X) = 0 where the operator F can be written as

F (X) = L(X) +NL = 0 , (6.6)

with L and NL being the linear and non-linear parts of the operator:

L =




























Lap I

0 Lap




























, NL =
Re

2




























0

DyψDxω −DxψDyω




























.

(6.7)

Then
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F




























ψ

ω




























=




























Lap I

0 Lap























































ψ

ω




























+
Re

2




























0

DyψDxω −DxψDyω




























= 0.

(6.8)

Now to obtain the Jacobian matrix H (linearization) of the operator F we start

by analyzing the following perturbations, let Ψ and Ω be the stream and vorticity

functions and let ψ and ω be its corresponding perturbations: Ψ → Ψ + ψ and

Ω → Ω + ω.

Let us look now at the propagation of the perturbations in the Navier-Stokes

equations

∆(Ψ + ψ) + (Ω + ω) = 0 , (6.9)

∆(Ω + ω) +
Re

2

[

(Ψ + ψ)y(Ω + ω)x − (Ψ + ψ)x(Ω + ω)y

]

= 0 . (6.10)
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Then the second equation is

∆(Ω + ω) +
Re

2

[

(Ψy + ψy)(Ωx + ωx) − (Ψx + ψx)(Ωy + ωy)

]

= 0 ,

∆(Ω+ω)+
Re

2

[

(ΨyΩx+Ψyωx+ψyΩx+ψyωx)−(ΨxΩy+Ψxωy+ψxΩy+ψxωy)

]

= 0 .

Discarding second order terms and regrouping

∆Ω+
Re

2

[

ΨyΩx−ΨxΩy

]

+∆ω+
Re

2

[

(Ψyωx + ψyΩx)−(Ψxωy + ψxΩy)

]

= 0 . (6.11)

Obtaining

{∆Ψ + Ω} + {∆ψ + ω} = 0 , (6.12)

{

∆Ω +
Re

2

[

ΨyΩx −ΨxΩy

]
}

+

{

∆ω+
Re

2

[

(Ψyωx +ψyΩx)− (Ψxωy +ψxΩy)
]
}

= 0 .

(6.13)

Then the Jacobian matrix (linearization) of the operator is
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H =




























Lap I

0 Lap




























+
Re

2




























0 0

DxωDy −DyωDx DyψDx −DxψDy




























.

(6.14)
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Chapter 7

BOUNDARY CONDITIONS

As we noted previously, the equations governing the fluid flow are elliptic, so that we

have an equilibrium problem expressed as a Boundary Value Problem. In this way, the

boundary conditions determine the solution in the complete domain. The vorticity

and the region where all the interesting phenomena take place is inside the physical

domain (Figure 5.2), and we can assume that outside this region the vorticity is zero

and the incoming plane flow enters unperturbed into the domain.

The boundary condition need to be carefully set to represent correctly the physics

of the problem. Refering again to figure 5.2, the boundary conditions on A and C are

determined by symmetry. On B the normal velocities on the obstacle are also zero.

In this way the line ABC is a stream line and we can impose ψ = 0 given that the
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physical meaning of ψ depends only in its derivatives and not any additive constant

(as shown in 3.6). We then have the following Dirichlet condition:

ψ = 0 in A, B, C (7.1)

Using the same symmetry argument, the vorticity in A and C must be zero:

ζ = 0 in A, C (7.2)

We can choose D far enough from the obstacle to consider a free flow condition. Then

we have the following Neumann condition:

∂ψ

∂x
= 0 . (7.3)

To express this condition in our mapped domain we can write

∂ψ

∂ξ
=
∂ψ

∂x
︸︷︷︸

0

∂x

∂ξ
+
∂ψ

∂y
︸︷︷︸

V0=1

∂y

∂ξ
(7.4)

Then

∂ψ

∂ξ
=
∂y

∂ξ
in D (7.5)
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Similarly

∂ζ

∂ξ
=
∂y

∂ξ
in D (7.6)

Expressing that the vorticity does not change beyond the end of the domain.

And for E sufficiently far from the obstacle we can say that the vorticity is negligible

and the incoming flow enters the domain freely as potential flow:

ψ = ψpot in E (7.7)

and

ζ = 0 in E (7.8)

However, for our specific conformal map, as the Reynolds number increases we

will see that the perturbation generated by the obstacle starts getting closer to E and

while the vorticity remains close to zero, the flow cannot be aproximated by potential

flow. We then calculate this boundary condition as in [9] by placing an array of

point vortices close to the boundary and observing how the top row of points can be

calculated from the row of points right before the boundary in a way that we do not

pick any exponentially growing modes[9]:













ψtop













= A













ψtop−1













(7.9)
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In this way, we can use this behavior as a non-local boundary condition by solving for

the matrix A and using it to calculate the top row from the previous row in general.

7.1 Second Boundary condition on the Obstacle

We already have one of the boundary conditions on the obstacle which is ψ = 0.

However, the second boundary condition is also a condition on the stream function

called the No-slip Boundary condition, which states that there is no tangential velocity

on the obstacle:

∂ψ

∂η
= 0 (7.10)

The lack of a condition for the vorticity in the obstacle has been considered by

some authors to lead to a degenerate system of equations, and was avoided in our

previous work by using finite differences to express this condition as a condition for

the vorticity[12], an approximation that would have destroyed the spectral accuracy

in our new approach. Analyzing this problem carefully we can see that the two

conditions on the stream function are enough to solve the system of equations if the

system is treated as a whole. That is, we can no longer solve one equation for the

stream function and then one equation for vorticity as we did with SOR methods.
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The implementation of the boundary conditions in the case of Finite Differences with

SOR methods was very intuitive and straightforward, since at every iteration we just

needed to relax interior points in the domain and recalculate Neumann boundary

conditions on certain boundaries, while leaving fixed values of the Dirichlet boundary

conditions unchanged. Now, we need to have one big system of equations that not

only includes the equations to be solved in the interior points, but also all the imposed

boundary conditions. Hence, the difficulty of the approach.

We include then all the boundary conditions on our operators on every Newton’s

iterative step (6.1), keeping in mind that each row of the Jacobian will be an equation,

and each column will be an unknown, and that the system must include as many

equations as unknowns. Therefore, if the discretization of the system includes M×N

points, the system must have 2MN equations (Stream and vorticity), from which

(M − 2)(N − 2) equations will be equations to be solved in the interior points and

the rest should be boundary conditions to be satisfied. In this way, we can represent

the full Jacobian as:
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H =




























Hi

I

Atop−1 − Itop

Dy




























Interior

Dirichlet

Non − local

Neumann

, (7.11)

Where Hi is the part of the Jacobian corresponding to the interior points, as given

by (6.14). After replacing some of the rows by the equations corresponding to the

boundary conditions, we need to make the corresponding change in the right-hand side

of the equation to be in accordance to these conditions, that is we need to construct

the right hand side of the equation (6.2) as follows:

RHS =




























−F (Xold)

0

0

0




























Interior

Dirichlet

Non − local

Neumann

. (7.12)

Note that by having the Identity on the Dirichlet rows of H we are assuring that
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on each correction step of the Newton’s Method, the change on the boundary points

specified by I is 0, that is, our initial guess should of course satisfy the boundary

conditions. On the non-local boundary section the equation to be satisfied is (7.9) in

the form Aψtop−1 − Iψtop = 0. Similarly to the Dirichlet condition, for the Neumann

boundary conditions the correction at each Newton’s step should have a derivative

normal to the obstacle equal to zero. Therefore, we want to use an initial guess that

also satisfies this boundary condition.
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Chapter 8

STRUCTURE OF THE

OPERATORS

In this chapter we will carefully study the structure of the operators from the dis-

cretization point of view. We studied the general structure of the operators in chapter

6 and how to include the boundary conditions in these operators. Now we want to ex-

plore the internal shape of the differentiation matrices for our combination of spectral

and finite difference methods.

For the purpose of demonstration and comparison, we will show the structures

of the differentiation matrices for a 40 × 40 discretization (instead of the finer grids

used for the computations) since the important features of the boundaries and the
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stencils would be hard to visualize otherwise. First, in the ξ direction, we used a 6th

order approximation of the derivative, resulting in a 7 point stencil. Leading to the

following structure for the differentiation matrix:
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0
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40

nz = 280

Figure 8.1: 40 × 40 Differentiation matrix Dξ

On the other hand, the use of spectral methods in the η direction result in full

matrices; recall that spectral method can be considered as the limiting order of finite

differences, where the stencil includes every point:
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Figure 8.2: 40 × 40 Differentiation matrix Dη
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Note that this differentiation matrices can be used to calculate the derivative in

the ξ or η direction when multiplied by a column vector containing the elements of a

row or column of our matrix containing the values of the stream or vorticity. However,

we want to be able to differentiate the whole matrix of stream or vorticity with respect

to ξ and η, when this matrix is represented as one single vector as proposed in the

chapter of the solution scheme. This first differentiation operator was not only used

in the second of the Navier-Stokes equations, but specific rows were also used in the

Neumann boundary conditions as explained in previous chapters. In this way, the full

differentiation matrix with respect to ξand η can be calculated by using the tensor

product (or Kronecker product) Dξ−full = Dξ ⊗ Iη and Dη−full = Iξ ⊗ Dη where Iη

and Iξ are the identity matrices of the sizes corresponding to each diection. These

products result in the following structures:
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Figure 8.3: Structure of the operators Dξ−full = Dξ ⊗ Iη and Dη−full = Iξ ⊗Dη
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In a similar way the Laplacian operator is then calculated as L = Iξ⊗D2
η + D2

ξ⊗Iη

with structure:
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Figure 8.4: Structure of the Laplacian

Now, recall the structure of the Jacobian from 6.14 which including the boundary

conditions is then
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Figure 8.5: Structure of the Jacobian
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We can see how the structure resembles that shown in 6.14, while the some of the

Dirichlet boundary conditions can be seen as identity elements in the top left corner,

center and bottom right corner of the Jacobian. The grid of points in the upper left

section of the matrix corresponds to the nonlocal boundary conditions.
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Chapter 9

COMPUTATIONS

In this chapter we will discuss the computations and the program used to solve the

system of equations. The details shown in this chapter are sometimes overlooked in

this type of project, but they are as fundamental as the theoretical counterpart, and

we will strive to show the beauty of some of the elements that were key to achieving

the results shown in the following chapters.

Compared to our previous work in 2004 [12] (FORTRAN90 was used together

with the graphical subroutines PGPLOT), we decided to use MATLAB because its

tremendous accessibility and power to handle sparse matrices, availability of sparse

solvers and many other tools. MATLAB also allows easy implementation of programs

that will take full advantage of 64-bit processor architecture together with 64-bit
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operating systems, and hence, is able to handle larger memory addresses, essential

for our demands.

However, even with all these tools available in MATLAB, a successful implemen-

tation of this combination of spectral and finite difference methods for a non-linear

system of equations like the Navier-Stokes Equations is not a simple task, and we will

guide you through the general structure of the program and some of the key ideas

that made this implementation possible.

First, our system was discretized as shown in (Chap. 5), with only 40 points

in the η direction, this small number of discretization points is possible due to its

careful collocation and the use of spectral methods in this direction (Chap. 4); 160

points were used in the ξ direction where 6th order Finite Difference was implemented.

(Different discretizations were also tested to check for grid dependence of the results).

After defining the parameters used to generate the grid, we created a program to

make the collocation of the points depending on specified options that gave us the

ability to easily compare the results of using spectral methods in both directions or

to switch equispaced or different types of stretching in the ξ direction.

The differentiation matrices were then created by the use of another subroutine

which internally calls a subroutine developed by B. Fornberg [14]. This implementa-
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tion was so versatile, that choosing different parameters in the creation of the grid

was enough to generate the matching differentiation matrix for the given grid.

At this point, one more subroutine was used to create a matrix with the infor-

mation on the type of boundary conditions that should be used at every boundary.

The importance of this matrix resides in the fact that the program will later refer to

this matrix in order to decide which rows to replace in the structure of the Jacobian

with the equation of the corresponding boundary condition (7.11). With this robust

implementation of the boundary conditions we were able to use the same program

even for a different geometry with a different placing of the boundary conditions as

the one explored in Chapter 12.

We are ready now to start Newtons method: first we load a good initial guess that

satisfies all boundary conditions. This initial guess was obtained first by solving the

system with 0 vorticity to get the solution for Reynolds number 1 and then solutions

at previous Re were used as initial guess to calculate the solution at higher Re.

At every step of the Newtons method (see 6.2) the system of equations was solved

using the subroutine cholsol (sparse Cholesky factorization) from the package CXS-

parse, which is the 64-bit version of the package CSparse developed by Tim Davis

[15]. This subroutine can be found on MATLAB Central and some of its subroutines

will be part of future releases of MATLAB. The Sparse Backslash operator included
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in MATLAB would give the same results, but the use of the 64-bit version of the

subroutines showed improvement in computation time.

Only 4 to 5 iterations were necessary to obtain convergenceO(correction) = 10−12,

and at that point the result was used as an initial guess for a higher Reynolds number.

Note that one single step of 6.2 required the use of three different subroutines, one

to calculate F at the previous step with the corresponding elements of the bound-

ary conditions replaced, one to calculate the Jacobian that includes the boundary

conditions and one to solve the sparse system.

Finally solutions were saved as the program was converging for increasing Reynolds

numbers, and one last subroutine was used to graph the results back in the physical

domain.
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Chapter 10

Stream Function and Vorticity

As explained in Chapter 9, the initial guess was obtained first by solving the system

with 0 vorticity to get the solution for Reynolds number 1. The initial guess can be

visualized by the following stream function:
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Figure 10.1: Stream Function for Potential Flow
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With this solution, we started increasing the Reynolds number by steps of 10

and we were able to converge to solutions up to Re=550 where the process becomes

unstable and the limitations in memory did not allow us to consider finer grids than

the ones implemented. The appendix A shows a table with densities and viscosities

for some fluids. In this way, we can relate the results shown with systems of practical

interest, but we have to be careful since as we noted previously in reality the physical

instabilities will destroy the wake bubble. We need to remark that the Reynolds

number totally characterizes the fluid in terms of stream function, zones of vorticity,

detachment of the boundary layer and properties of the wake bubble. Moreover, since

it includes the density of the fluid ρ, its dynamic viscosity µ, the incident velocity U∞,

and the size of the obstacle L, the same Reynolds number can characterize an infinite

number of cases of interest. For example by doubling the Reynolds number, we can

be characterizing the same fluid at double velocity, or the same fluid perturbed by

an obstacle of double size, or fluids with different density and viscosity flowing at the

same velocity past the same obstacle. In this way each Reynolds number gives several

possibilities.

Before we start increasing the Reynolds number, let us observe the behavior of

the fluid if we have a very small Reynolds number. For Re = 0.001 the solution

represents a flow with very high viscosity or a flow with very low speed. In both
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cases the no-slip boundary condition in the obstacle keeps the flow almost still next

to the obstacle and the boundary layer is a thick coating around the obstacle, while

the stream lines have to go a longway around the obstacle

x

y

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Figure 10.2: Stream Function for Re=0.001

Which would lead to the following distribution of the vorticity field:
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Figure 10.3: Vorticity for Re=0.001
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Now, as we start increasing the Reynolds number, the flow starts showing detach-

ment from the obstacle:
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Figure 10.4: Stream Function for Re=10

And for Reynolds number 15 we can clearly see the separation of the fluid and

the zone where the stream lines are closed paths and the fluid is confined behind the

obstacle.
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Figure 10.5: Stream Function (Closed Paths) for Re=15
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With corresponding vorticity field
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Figure 10.6: Vorticity for Re=15

Making a zoom in the obstacle we can better observe the zones where the vorticity

is generated and we can clearly see the importance of having a grid with enough

resolution close to the obstacle where the large gradients occur.
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Figure 10.7: Close zoom to the obstacle. Vorticity for Re=15

We will use these results to calculate the drag force exerted by the fluid on the obstacle

in section 11.
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Stream Function

Figures 10.8 to 10.11 show the stream lines (level curves of the stream function) and

vorticity regions for Reynolds numbers from 50 to 500; from these results we discuss

features of the flow and will study how the length and width of the wake vary with

Reynolds number.
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Figure 10.8: Stream Function for Re=50 to Re=200
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Figure 10.9: Stream Function for Re=250 to Re=500
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Vorticity
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Figure 10.10: Vorticity Function for Re=50 to Re=200. Contour levels shown: 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 4, 5.
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Figure 10.11: Vorticity Function for Re=250 to Re=500. Contour levels shown: 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 4, 5.

The solutions shown were tested for grid dependency by changing the resolution

of the grids. They were also tested by using different orders of the approximation

as Finite difference representation of the differential operators in the ξ direction.
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In these tests, characteristics of the solution like the length and width of the wake

were compared and the differences were smaller than the error of the interpolation

method used to measure the corresponding length or width. However, the solutions

for Reynolds number close to 500 were only obtained in the finest grid. The fact

that the method was reaching its limits at these values of Re do not allow us to

be very confident of the results, but the method proved to be accurate for lower

Reynolds numbers, leaving us with just memory capacity constraints to handle these

increasingly unstable solutions. The following figures summarize the characteristics

of the wake bubble.

Figure 10.12: Length of the wake vs. Reynolds number for R=20 to Re=130
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Figure 10.13: Length and width of the wake vs. Reynolds number for R=20 to

Re=550

As we can see, for low Reynolds numbers, the length of the wake bubble increases

linearly as the Reynolds number increases, with a coefficient of 0.131 in the linear

regression. The asymptotic behavior has been shown to be linear, then the loss of

linearity past Re=130 raise questions about how well resolved the system is for higher

Reynolds numbers. As we mentioned before the system at higher Reynolds numbers

becomes increasingly unstable and the limitations of the method in terms of computer

power makes it extremely difficult to keep refining the grids.
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Chapter 11

Drag Coefficient

Our study of flow past a circular cylinder is equivalent to considering a circular

cylinder moving in a fluid that is still; in both cases the obstacle will experience a

force exerted by the fluid, in the direction of the velocity of the fluid, or equivalently

against the direction of movement of the obstacle. This force is called Drag and is

given by

FD =
1

2
ρV 2ACD , (11.1)

where ρ is the density of the fluid, V is the velocity of the fluid, A is the frontal area

of the obstacle and CD is a non-dimensional coefficient that depends on the geometry

of the obstacle and the Reynolds number. This coefficient has two contributions, one
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due to the viscous forces and one due to the pressure on the obstacle[10]:

CD = CV + CP , (11.2)

where in polar coordinates

CV = − 8

Re

∫ π

0
ωr=1 sin θdθ (11.3)

and

CP =
4

Re

∫ π

0

[(

ω +
∂ω

∂r

)

r=1
sin θ

]

dθ (11.4)

Then

CD =
4

Re

∫ π

0

(
∂ω

∂r
− ω

)

r=1
sin θ dθ . (11.5)

The integral is calculated along the surface of the obstacle and the derivative with

respect to r will be calculated using spectral differentiation in the η direction:

CD =
4

Re

∫ π

0

(

Dηω − ω
)

sin θ dθ . (11.6)
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The following figures show the vorticity on the surface of the obstacle, measured

in degrees from the stagnation point for different Reynolds numbers, and from these

values, the corresponding calculated Drag coefficients.

Figure 11.1: Vorticity value on the surface of the obstacle vs degrees from stagnation

point

The maximum of vorticity occurs at 50 degrees from the stagnation point for the

case of Re=50 but it quickly moves to 46 degrees where it stays stable from Re=100 up

to Re=550. As the Reynolds number increases this maximum vorticity in the surface

of the cylinder increases reaching a value of 15 at Re=450 where it seems to stabilize.

67



Using this values we calculated the corresponding drag coefficients. The following

table presents a comparison with previous results by Fornberg[8] and Gushchin &

Schennikov[19]

Re Vargas Fornberg G. & S.

50 1.2002 — 1.519

100 1.1054 1.06 —

200 0.7884 0.833 1.167

300 0.889 0.729 0.968

400 0.9446 0.645 —

500 0.8247 0.528 0.902

Again our method was reaching its limits at Re=550, but the values of the vorticity on

the surface of the obstacle coincide closely to those found by Fornberg in [8](Fig. 12)

using Finite differences with larger matrices.
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Chapter 12

JOUKOWSKI

TRANSFORMATION

Having a robust implementation of the methods described, allow us to expand our

scope to more general geometries. We decided to use another map that would allows

us some versatility, the Joukouski transormation. This conformal map is given in its

most simple form by:

Z = X +
1

X
, (12.1)

where as in Chapter 5 the X plane is the physical domain and the Z plane is the

mapped domain where the equations will be solved (compare with the map 5.1). Then

via this map we will transform the upper half of the plane outside of the unit circle
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y

Figure 12.1: Physical Domain (X Plane)

to the upper half of the plane where the unit circle will be mapped to the strip from

−2 to 2 in the x axis:

-2 2 x

h

Figure 12.2: Mapped Domain (Z Plane)

Then we can solve the equations in the mapped rectangular domain similar to

that of Fig. 5.4. After including some stretching to have better resolution in the

regions of interest, the resulting grid becomes:

70



−15 −10 −5 0 5 10 15 20
0

2

4

6

8

Figure 12.3: Rectangular grid in the Z Plane

Note that the grid includes an exponential stretching for the region before −2 then

an equispaced grid in the section from −2 to 2 which corresponds to the obstacle

and then another exponential stretching after 2. With this carefully designed grid

collocation we can solve the system of equations and then return the solution to the

physical domain by inverting the map:

X =
Z ±

√
Z2 − 4

2
(12.2)

Mapping the rectangular stretched grid to
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Figure 12.4: Rectangular grid mapped back to the physical Z plane
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As we can see the stretchings used in the rectangular grid correspond to a better

resolution close to the obstacle and a lower resolution on the regions of low gradients.

Also note that the graphs of the grids shown in this section are scaled in both axes

to present the features of the different shapes that we will explore, but the solutions

were in many cases obtained from grids of larger regions in the physical domain.

With this map we were able to validate the implementation by checking with the

previous results obtained using the conformal map proposed by Fornberg. The results

from this map were in accordance with those shown in chapter 10 and this was also a

good indication that our solution did not have any grid dependence; not only different

grid densities were used, but also a different conformal map with a completely different

stretching, and no difference was observed in any of the features of the flow. After

this validation, let us attack more general geometries by implementing the Joukowski

transformation once again, but now to the circle in the Z plane. This time we will

use a more general version of the Joukowski map,

Z2 = Z +
λ2

Z
. (12.3)

As we already discussed, for λ = 1 = R this map would transform the circle with

radius R = 1 centered at the origin to the strip from −2 to 2 in the x axis. Now we

will use this map to transform the outside of the circle, by first displacing the center
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of the circle to have coordinates (−xc, 0) and letting λ = R − xc
[24]. This new map

will transform the displaced circle to a symmetric airfoil, whose shape will depend on

the parameter xc and hence on λ.

We will now explore different shapes for different values of xc. In each case, the

resulting airfoils were thinner than the original circle, that is, a more streamlined

shape with a cross section less than that of the circle. However, as we discussed in

page 18, the Reynolds number depends on the size of the obstacle, therefore in each

of the cases shown below, the shape was normalized to have cross section equal to 1

in order to be able to compare the results with those of the circle of radius 1 at the

corresponding Reynolds number.

12.1 Case xc = 0.5

The sequence of transformations applied to rectangular grid shown in Fig. 12.3 is the

following:

X =
Z ±

√
Z2 − 4

2
Inverse Joukowski,

followed by the displacement

Z2 = X − xc shift the unit circle xc units to the left.
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Then

Z3 = Z2 +
λ2

Z2
Where λ = 1 − xc.

Which after scaling to have cross section equal to 1, results in the following grid:
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Figure 12.5: Rectangular grid mapped back to the physical Z plane

As mentioned in Chapter 9, the robustness of the design of the program allows

us to implement these new geometries by simply replacing elements in the boundary

matrix with the corresponding type of boundary. With these new values in the

boundary matrix, the program generates a new initial guess, and the function as well

the Jacobian will be calculated accordingly for the new set of boundary conditions.

The new boundary conditions are defined under the same considerations as before:

symmetry, non-slip, far flow and even the non-local boundary condition was used to

define the boundary condition for the top without imposing a fixed value like potential

flow, that would at some point restrict the growth of the wake bubble. Let us now

explore the impact of this more streamlined geometry on the steady solution. Recall
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from Fig. 10.5 that the flow starts detaching from the obstacle even for low Reynolds

numbers; now observe the behavior of the solution at comparable values of Re:
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Figure 12.6: Stream Function for Joukowski airfoil with xc = 0.5 at Re=15

With corresponding vorticity

x

y

 

 

−10 −5 0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

0.5

1

1.5

2

2.5

3

Figure 12.7: Vorticity for Joukowski airfoil with xc = 0.5 at Re=15

In this case there is no separation at low Reynolds numbers, and although the
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vorticity in the front of the obstacle is very similar to that of the circular cylinder, the

elongated tail does not give rise to the negative vorticity that is generated at posterior

region of the obstacle in the circular case as shown in Fig. 10.7. The separation will

begin at higher Reynolds numbers, in this case at Re=25 the recirculation region is

similar in size to that of the circular case at Re=15. The size of the wake bubble will

be in general smaller than that of the circular cylinder for corresponding Re, but it

will keep increasing in a similar way:
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Figure 12.8: Stream Function for Joukowski airfoil with xc = 0.5
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12.2 Case xc = 0.25

If we change the parameter to generate a more streamlined obstacle, the Reynolds

number required to generate separation of the fluid will increase:
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Figure 12.9: Stream Function for Joukowski airfoil with xc = 0.25

As we can see, for Reynolds number 50 the flow shows a very small region of

separation close to the end of the tail, compared with the wake in Fig. 12.8, and even

for Re=100 the size of the wake is greatly reduced. The reason we always consider

flow separation is its impact on the stability of the flow, notions that will be explored
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in detail in the next chapter.

12.3 Case xc = 0.5 for inverted airfoil

We can now explore the intuitive idea of considering an obstacle that is not blunt

anymore, that is, an object that is sharper in the region facing the incoming flow. This

geometry can be easily achieved by displacing the unit circle in the opposite direction

compared to our previous case. By shifting the center of the circle to (xc, 0) and again

letting λ = R−xc, the map given by 12.3 will generate a symmetric Joukowski airfoil

whose shape is the reflection along the y axis of the cases shown above:
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Figure 12.10: Inverted Symmetric Joukowsky airfoils for xc = 0.5 (top) and xc = 0.25

(bottom)
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For both of this cases, even though the shape is sharp in the front, its non-

streamlined region in the back produced flow detachment:
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Figure 12.11: Stream lines at Re = 50 for xc = 0.5 (top) and xc = 0.25 (bottom)
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With corresponding vorticity
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Figure 12.12: Stream lines at Re = 50 for xc = 0.5 (top) and xc = 0.25 (bottom)

For the more streamlined version of the airfoil, the vorticity is distributed evenly

on the surface compared to the case xc = 0.5 and the only region of high vorticity is

in the tip of the airfoil where the flow changes from coming as free flow to a sudden

stop at the stagnation point.
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Chapter 13

SUCTION BOUNDARY

CONDITION

Throughout the project we have discussed flow separation and the creation of the wake

bubble; we saw how streamlined obstacles delay the velocity (in terms of increasing

Reynolds number) at which the fluid detaches from the surface of the obstacle, but

what else can be done to suppress this separation further? One idea is to suck the

fluid in the region where the separation appears, and we will approach the problem

from a very intuitive point of view.

Flow separation has many implications in practical applications; it can increase

drag, and leads in many cases to turbulence, which is out of the scope of this study.
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Practical solutions to this problem have been designed before, as is the case of in-

cluding small orifices in the wings of airplanes to suck air and delay separation. We

will study how to model this mathematically from a very basic perspective. I refer

to it as basic perspective because different studies describe this suction in terms of

changes of the vorticity in the surface of the obstacle, again due to the inconvenience

of not having a boundary condition for the vorticity in the obstacle. However, as

we explained before, the system is complete even if we don’t have a boundary condi-

tion for the vorticity as long as we have two boundary conditions. In this case both

boundary conditions will be for the stream function, not as ψ = 0 and ∂ψ
∂η

= 0 (no-slip

boundary condition) but replacing the first by a condition that describes flow going

inside of the obstacle.

Recall from 3.6 that for cartesian coordinates

u =
∂ψ

∂y
; v = −∂ψ

∂x
,

then while the no-slip boundary condition ∂ψ

∂η
= 0 expresses that the tangential veloc-

ity in the surface of the obstacle is zero, assigning a value to ∂ψ

∂ξ
would represent a flow

inward or outward from the obstacle. In this case while keeping the same boundary

conditions as before for the frontal part of the circular cylinder, we will replace the

boundary condition for the region where separation starts to occur by
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∂ψ

∂ξ
= Ksuction , (13.1)

whereKsuction will be a parameter that we will control and it will represent the velocity

at which the flow is going inside the obstacle. We will use as base for comparison,

the flow at Re=25:
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Figure 13.1: Stream function for Re=25

For Ksuction = 10 the separation is almost completely suppressed and for Ksuction = 20

the suction is strong enough to take the streamlines to the inside of the cylinder:
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Figure 13.2: Stream function for Re=25, Ksuction = 10
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Figure 13.3: Stream function for Re=25, Ksuction = 20

If we keep increasing the suction, more streamlines will get trapped by the obstacle
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Figure 13.4: Stream function for Re=25, Ksuction = 80

On the other hand, as an experiment, if Ksuction takes a negative value, we would be

blowing fluid instead of absorbing it, in that case the wake would actually increase in

size.
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Figure 13.5: Stream function for Re=25, Ksuction = −80
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Chapter 14

CONCLUSIONS

We successfully implemented spectral methods to solve the Navier-Stokes equations

for a viscous flow past different geometries. The methods used were tested and showed

no grid dependence, not only by changing grid densities but also by using different

conformal maps.

Even though a grid of 40×160 was used to reach Reynolds number 550, the power

of spectral accuracy allowed us to calculate solutions with an error of ε = O(10−12) for

grids with only 20 points in the η direction. The threshold for considering convergence

of the Newton’s Method was ε < 10−11, which was sometimes attained after only 5

to 6 iterations even for discretizations with 20 points in the direction where spectral

methods were used. For a discretization of 20×100 the equations were solved in 32.52
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seconds, requiring 8 iterations to achieve convergence (ε = 5.68 × 10−12) on an Intel

Core(TM)2 Duo CPU T6400 at 2.00GHz, with 4GB Ram and 4GB of Readyboost as

pagefile. We can compare this performance with SOR method with second order finite

differences on a 60 × 100 which required a vast amount of 4650 iterations due to the

very small relaxation parameter required to avoid spurious artificial time instabilities

from developing. These 4.6 thousand iterations only required 34.5 seconds (on the

same computer) which is comparable to our previous results, but the accuracy was

only ε = 10−4 compared with ε = 5.68 × 10−12 from spectral methods.

In terms of accuracy, spectral differentiation with Newton’s Method is clearly more

powerful, however as we can see, the computational cost increases very fast for finer

grids. For this specific example, in the case of Newton’s method, we solved a system

of 4000 equations with 4000 unknowns (a 20×100 grid for both stream and vorticity)

where the Jacobian is not as sparse as the case of Finite differences due to the full

matrices from spectral differentiation. This structure is definitely a limiting factor

when trying to solve the system on larger matrices. For Reynolds numbers close to 550

we required a grid with a size of 40× 160, and at this point we were already reaching

the limits of the computer power (pagefile use as memory is extremely slow to make it

viable for computations). On the other hand, with SOR with finite differences we can

increase the number of points in the grid without incurring in memory problems due
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to the fact that the process is completely algebraic. Then, we can easily implement

grids of sizes like 600×1000 like the ones used in [12], but at the expense of sacrificing

accuracy.

The characteristics of the wake bubble were studied, showing the wake length to

increase linearly for low Reynolds numbers (up to Re=130) but changing its behavior

as the vorticity gets convected back to the wake bubble. The vorticity in the surface

of the obstacle was studied for different Reynolds numbers and was in accordance

with results seen in [8](Fig. 12). Drag coefficients were calculated and compared with

previous results form Fornberg[8] and Gushchin & Schennikov[19].

With the robust implementation of the method we were able to study the flow past

different geometries. Different symmetric Joukousky airfoils were studied as a sample

of the broader variety of problems that can be explored by the use of conformal

maps and arbitrary mesh densities. As another example of the versatility of the

methods, we experimented with suction boundary conditions and the impact on the

flow solution. All these explorations gave us the opportunity to show that many of the

implementation ideas do not have to be restricted to computational fluid mechanics,

they can be easily exported to a larger spectrum of partial differential equations.
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APPENDIX
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Appendix A

PHYSICAL PROPERTIES OF

SOME FLUIDS
Fluid T[◦C] Density ρ [ kg

m3 ] Viscosity ν [ kg
ms

]

(At atmospheric pressure)

0 999.9 1.787×10−3

10 999.7 1.304×10−3

20 998.2 1.002×10−3

Water 40 992.3 6.54×10−4

60 983.2 4.67×10−4

80 971.8 3.55×10−4

100 958.4 2.83×10−4

-100 2.040 1.16×10−5

0 1.293 1.71×10−5

Air 50 1.093 1.95×10−5

100 0.946 2.18×10−5

500 0.456 3.58×10−5

1000 0.277 4.82×10−5

Motor Oil(SAE 10) 30 ∼ 875.2 0.2

Glycerine 0 ∼ 1173 10.000
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